B.Sc (III) PCM
 Paper-II Set B
 Complex Analysis

Time: 2:30
Maximum Marks: 50

Unit I

1. (a) Define Sterographic projection.
(b) State and prove the sufficient condition for $f(z)$ be analytic.
2. (a) If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is an analytic function of $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $u-v=e^{x}(\cos y-\sin y)$ find $f(z)$ in terms of z.
(b) Prove that the function $u(x, i y)=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$)is harmonic also determine the harmonic conjugate and find the corresponding $f(z)$ in term of z

Unit 2

3. (a) Let $f(z)$ be a single valued analytic function in a simple connected domain G, if $a, b \in G$, then $\int_{a}^{b} f(z) d z=\emptyset(b)-\emptyset(a)$, where $\emptyset(z)$ is an indefinite integral of $f(z)$.
(b) Prove that $\int_{c} \frac{d z}{z-a}=2 \pi i$, where C is given by the equation $|z-a|=R$.
4. (a) Prove that if $f(z)$ is analytic function in a simply connected domain G. and z_{0} is any point of G $f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{\left(z-z_{0}\right)} d z$
(b) State and prove Poission integral formula.

Unit-3
5. (a) State and prove laurent's theorem.
(b) Expand the function $f(z)=\frac{1}{z^{2}-3 z+2}$ valid in the regions:
(i) $|z|<1$
(ii) $1<|z|<2$
(iii) $|z|>2$
6. (a) A power series represents an analytic function inside its circle of convergence.
(b) find the radii of convergence of the following power series: $\sum \frac{n \sqrt{2}+i}{1-2 i n} z^{n}$

Unit-4

7. (a) Prove that the necessary and sufficient condition for an isolated singularity $\mathrm{z}=\mathrm{a}$ to be a pole of function $f(z)$ is that $|f(z)| \rightarrow \infty$ as $z \rightarrow$ a is any manner.
(b) find the location and nature of the singularities of the function $f(z)=\frac{1}{z\left(e^{z}-1\right)}$.
8. (a) state and prove Rouche's theorem .
(b) Evaluate the integral $\frac{1}{2 \pi i} \int_{c} \frac{e^{z t}}{z^{2}\left(z^{2}+2 z+2\right)} d z$ around the circle $C:|z|=3$.

Unit -5

9. (a) Prove by contour integration that $\int_{0}^{\infty} \frac{\log \left(1+x^{2}\right)}{1+x^{2}} d x=\pi \log 2$
(b) state and prove that Uniqueness of analytic continuation.
10. (a) In the Transformation $z=\frac{i-w}{i+w}$, show that the positive half of the w-plane given by $v \geq 0$ corresponds to the circle $|z| \leq 1$ in the $z-$ plane.
(b) Show that the transformation $w=\frac{2 z+3}{z-4}$ maps the circle $x^{2}+y^{2}-4 x=$ 0 into the straight line $4 u+3=0$.
